We give a short proof of a result of G. Paouris on the tail behaviour of the Euclidean norm $\left| X \right|$ of an isotropic log-concave random vector $X\,\in \,{{\mathbb{R}}^{n}},$ stating that for every $t\,\ge \,1$,
$$\mathbb{P}\left( \left| X \right|\,\ge \,ct\sqrt{n} \right)\,\le \,\exp (-t\sqrt{n}).$$
More precisely we show that for any log-concave random vector $X$ and any $p\,\ge \,1$,
$${{(\mathbb{E}{{\left| X \right|}^{p}})}^{1/p}}\,\sim \,\mathbb{E}\left| X \right|\,+\,\underset{z\in {{S}^{n-1}}}{\mathop{\sup }}\,\,{{(\mathbb{E}{{\left| \left\langle z,\,X \right\rangle \right|}^{p}})}^{1/p}}.$$