This paper studies the issue of well-posednessfor vector optimization. It is shown thatcoercivity implies well-posedness without any convexity assumptionson problem data.For convex vector optimization problems,solution sets of such problems are non-convex in general,but they are highly structured. By exploring such structures carefully via convex analysis,we are able to obtaina number of positive results, including a criterion for well-posedness in terms of that of associated scalar problems.In particularwe show that a well-known relative interiority conditioncan be used as a sufficient condition for well-posedness in convexvector optimization.