In this study, computed tomography (CT) technology was used to measure body composition on live pigs for breeding purposes. Norwegian Landrace (L; n = 3835) and Duroc (D; n = 3139) boars, selection candidates to be elite boars in a breeding programme, were CT-scanned between August 2008 and August 2010 as part of an ongoing testing programme at Norsvin's boar test station. Genetic parameters in the growth rate of muscle (MG), carcass fat (FG), bone (BG) and non-carcass tissue (NCG), from birth to ∼100 kg live weight, were calculated from CT data. Genetic correlations between growth of different body tissues scanned using CT, lean meat percentage (LMP) calculated from CT and more traditional production traits such as the average daily gain (ADG) from birth to 25 kg (ADG1), the ADG from 25 kg to 100 kg (ADG2) and the feed conversion ratio (FCR) from 25 kg to 100 kg were also estimated from data on the same boars. Genetic parameters were estimated based on multi-trait animal models using the average information–restricted maximum likelihood (AI-REML) methodology. The heritability estimates (s.e. = 0.04 to 0.05) for the various traits for Landrace and Duroc were as follows: MG (0.19 and 0.43), FG (0.53 and 0.59), BG (0.37 and 0.58), NCG (0.38 and 0.50), LMP (0.50 and 0.57), ADG1 (0.25 and 0.48), ADG2 (0.41 and 0.42) and FCR (0.29 and 0.42). Genetic correlations for MG with LMP were 0.55 and 0.68, and genetic correlations between MG and ADG2 were −0.06 and 0.07 for Landrace and Duroc, respectively. LMP and ADG2 were clearly unfavourably genetically correlated (L: −0.75 and D: −0.54). These results showed the difficulty in jointly improving LMP and ADG2. ADG2 was unfavourably correlated with FG (L: 0.84 and D: 0.72), thus indicating to a large extent that selection for increased growth implies selection for fatness under an ad libitum feeding regime. Selection for MG is not expected to increase ADG2, but will yield faster growth of the desired tissues and a better carcass quality. Hence, we consider MG to be a better biological trait in selection for improved productivity and carcass quality. CT is a powerful instrument in conjunction with breeding, as it combines the high accuracy of CT data with measurements taken from the selection candidates. CT also allows the selection of new traits such as real body composition, and in particular, the actual MG on living animals.