Influence of aqueous leaf extracts, leaf residue, and leached-leaf residue of houndstongue, a noxious rangeland weed, on seedling emergence of forage grasses was studied. Ultraviolet-B (UV-B) effects during houndstongue growth on subsequent germination and growth-inhibitory activity of leaf extracts were investigated. Addition of glasshouse-grown houndstongue leaf extract to mineral soil decreased emergence of crested wheatgrass by 13% and prairie junegrass by 20% at 14 d after sowing. Idaho fescue emergence was unaffected. Incorporation of houndstongue leaf- and leached-leaf residue into soil (0.4 g residue : 20 g soil) delayed emergence of forage grasses. At 14 d after sowing, houndstongue leaf residue spread on the soil surface (0.2 g residue : 20 g soil) tended to inhibit seedling emergence more than leaf residues incorporated into soil. In separate experiments, houndstongue plants were grown at 0, 4, 7, and 11 kJ/m2/d biologically effective UV-B radiation for 6 wk, and leaf extracts (0.5, 1, 2, and 4% wt/v) were prepared. Exposure of houndstongue to increasing UV-B dose during plant growth generally increased the inhibitory activity of their leaf extract on prairie junegrass germination. Crested wheatgrass and Idaho fescue seedlings incubated in extracts of houndstongue leaves exposed to UV-B, compared with leaves grown in a UV-B–free environment, had decreased root lengths. Leaf extracts of plants exposed to elevated UV-B levels had higher absorbance at 300 nm, indicating greater concentration of UV-B–absorbing compounds. This study suggests houndstongue leaf extracts and residues inhibit seed germination and seedling emergence and that UV-B may enhance their allelopathic influence on some forage grasses. Field studies are needed to confirm the allelopathic influence of houndstongue under rangeland conditions.