Benzimidazole (BZ) resistance is widespread and appears to be readily selected in a variety of nematode parasites of animals. There have been reports of a lack of efficacy of BZ anthelmintics against soil transmitted nematode parasites of humans. However, resistance to BZs in nematodes of humans has not been confirmed. It is difficult to perform tests to confirm anthelmintic resistance in humans for a variety of technical and ethical reasons. The use of anthelmintic drugs for the control of helminth parasites in people is increasing massively as a result of numerous programmes to control gastrointestinal nematode parasites in children, the Global Program for the Elimination of Lymphatic Filariasis and other programmes. Many of these programmes are dependent on BZ anthelmintics and this will increase the pressure for resistance development to BZ anthelmintics in nematode parasites of people. We need to perform monitoring for anthelmintic resistance in these programmes and we need new tools to make that monitoring sensitive, inexpensive and practical. There is a real need for DNA-based markers for BZ resistance in nematode parasites of humans. We have a reasonable understanding of the molecular mechanisms and genetics of BZ resistance in some nematode parasites of animals and similar mechanisms are likely to prevail in nematodes of humans. Based on the likelihood that similar single nucleotide polymorphisms (SNPs) will be involved in BZ resistance in human, as in animal nematode parasites, rapid SNP assays have been developed for possible BZ resistance development in Wuchereria bancrofti.