With the increasing usage of Al alloys in vehicle manufacture, it is necessary to join dissimilar Al alloys with lap joint. However, hot cracking is a challenging issue due to the chemical composition and thermal tension, which greatly determines the reliability of automobile operation. Among different Al alloys, the series 5000 (Al–Mg) and 6000 (Al–Mg–Si) are widely used. To better understand the hot cracking behavior, various stack ups of AA5754 and AA6013 were laser welded to investigate the effects of process parameters on hot cracking formation. The chemical composition, microstructure, fusion ratio, and fracture morphology of the weld joint were also examined. The results showed that the order of material stacking affected weld's susceptibility to hot cracking significantly, and the critical process parameters were obtained for tested conditions which could effectively reduce hot cracking. The findings from this work provide guidance for hot cracking prevention in laser welding of dissimilar Al alloys.