Sex steroids play a significant role in regulating the parasite load in experimental intraperitoneal Taenia crassiceps cysticercosis of male and female Balbc/anN mice. Briefly, oestrogens increase parasite loads and androgens decrease them (1) by acting directly on the parasite, favouring or hindering its reproduction, respectively, and (2) by biasing the hosts' immune response towards a parasite-permissive Th2 or a parasite-restrictive Th1 response. The infected male host also undergoes drastic endocrinological and behavioural changes that may impinge upon the course of infection, and the host's mating behaviour and its exposure to predators. In addition, at different times of infection, significant changes occur in the expression of c-fos in the host's hyppocampus, hypothalamus and preoptic area. Thus, the host's brain seems to sense and/or react to intraperitoneal infection. The physiological domains of the network affected by the infection, which classically included the hypothalamus-pituitary-axis and the immune system, must now incorporate the host's sexual hormones and other areas of the brain. The network's complex circuitry and functions may help understand some basic questions of parasitology (i.e. the hosts' sexual dimorphism in parasite infections, host-parasite specificity, heterogeneity in the course and outcome of infections at different stages of parasite and host development). The plurality of elements and the complexity of the network that regulates the host-parasite relationship also point to additional strategies for the treatment and control of infections.