The objective of this project is to integrate a domestic photocatalytic desulphurization facility with a biogas upgrading module and try to develop a system for biogas desulphurization and upgrading under ambient conditions. Four photocatalytic desulphurization reactors (PDRs) and one activated carbon reactor (ACR) were applied for biogas desulphurization and filtration under ambient conditions. Moreover, a hollow fibre carbon dioxide (CO2) adsorption module was applied for biogas upgrading. The operation pressure of the PDR and ACR was under ambient pressure. Results showed that hydrogen sulphide removal efficiency of the photocatalytic desulphurizer was about 0.99–1.00 (v/v) under the inlet biogas flow less than 5 litres/min and the concentration of inlet hydrogen sulphide was lower than 5600 mg/m3. For desulphurized biogas upgrading, the removal efficiency of CO2 was higher than 0.90 (v/v) under the outlet biogas flow was 1 litre/min (i.e. inlet biogas flow was about 2 litres/min). However, the ratio of methane in the upgrading biogas was lower than 0.90 (v/v). Thus, nitrogen gas removal cartridges will be integrated with the biogas upgrading module to promote methane concentration in the upgraded biogas.