We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study a family of binomial ideals defining monomial curves in the n-dimensional affine space determined by n hypersurfaces of the form
$x_i^{c_i} - x_1^{u_{i1}} \cdots x_n^{u_{1n}}$
in
$\Bbbk [x_1, \ldots , x_n]$
with
$u_{ii} = 0, \ i\in \{ 1, \ldots , n\}$
. We prove that the monomial curves in that family are set-theoretic complete intersections. Moreover, if the monomial curve is irreducible, we compute some invariants such as genus, type and Frobenius number of the corresponding numerical semigroup. We also describe a method to produce set-theoretic complete intersection semigroup ideals of arbitrary large height.
Guest–Ohnita and Crawford have shown the path-connectedness of the space of harmonic maps from ${{S}^{2}}$ to $\text{C}{{P}^{n}}$ of a fixed degree and energy. It is well known that the $\partial$ transform is defined on this space. In this paper, we will show that the space is decomposed into mutually disjoint connected subspaces on which $\partial$ is homeomorphic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.