Engineering machines are becoming increasingly complex and possess more control variables, increasing the complexity and versatility of the control systems. Different configurations of the control system, named a policy, can result in similar output behavior but with different resource or component life usage. There is therefore an opportunity to find optimal policies with respect to economic decisions. While many solutions have been proposed to find such economic policy decisions at the asset level, we consider this problem at the fleet level. In this case, the optimal operation of each asset is affected by the state of all other assets in the fleet. Challenges introduced by considering multiple assets include the construction of economic multi-objective optimization criteria, handling rare events such as failures, application of fleet-level constraints, and scalability. The proposed solution presents a framework for economic fleet optimization. The framework is demonstrated for economic criteria relating to resource usage, component lifing, and maintenance scheduling, but is generically extensible. Direct optimization of lifetime distributions is considered in order to avoid the computational burden of discrete event simulation of rare events. Results are provided for a real-world case study targeting the optimal economic operation of a fleet of aerospace gas turbine engines.