Internal stresses and textures of electroplated copper films (t=2, 8, 15, 30, 45, and 60) electrodeposited on Al substrates were studied using X-ray diffraction techniques. Results show that the stresses in the films are tensile. The 8 to 60 μm thick films have (220) fiber texture, in good agreement with strain energy minimization calculation. Results also show that a further rotational alignment of the fiber-textured grains was developed, and small amounts of the fiber-textured grains have their (2, −2, 0) planes aligned parallel to the flow direction of the electrodeposited currents. The degree of the rotation alignment increases with film thickness. Values of stress and the degree of texture of copper films were found to be adjustable using an ultrasound technique. Internal stress and the degree of the (220) texture decrease significantly by applying an ultrasound treatment during the electrodeposition process.