Transgenerational maternal effects on performance (rm) after host transfer were evaluated in the generalist aphid Myzus persicae s.s., and in its subspecies specialized on tobacco, M. persicae nicotianae Blackman. We tested whether the performance of these taxa, when reared separately on optimal and suboptimal hosts (as sources of different maternal background) and then transferred to optimal hosts, experienced variations along four successive generations. Additionally, to compare the tolerance of both taxa to stress following host transfers, developmental instability (fluctuating asymmetry and body abnormalities) along the four generations was assessed. Taxon, rearing host, and generation affected the performance after host transfer. In the generalist, there was a significant improvement of rm along generations when transferred from suboptimal to optimal host and a significant decrease when transferred from optimal to optimal host; in the specialist, no increase or decrease occurred in any host transfer treatment. Transfer from suboptimal to optimal hosts caused higher losses of remaining replicates along generations than transfers from optimal to optimal hosts, and the specialist showed higher losses than the generalist. The only significant effect detected in comparisons involving fluctuating asymmetry values was that of taxon on length of siphunculi. Frequency of body abnormalities was not affected by treatments. Collectively, these results show a transgenerational weakening of maternal effects in the generalist but not in the specialist aphid, and suggest that rearing the latter in a suboptimal host causes not easily reversible changes that further give rise to constraints in performance.