We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the continuity and differentiability of the Hardy constant with respect to perturbations of the domain in the case where the problem involves the distance from a boundary submanifold. We also investigate the case where only the submanifold is deformed.
In this paper we study the existence and the analytic dependence upon domain perturbation of the solutions of a nonlinear nonautonomous transmission problem for the Laplace equation. The problem is defined in a pair of sets consisting of a perforated domain and an inclusion whose shape is determined by a suitable diffeomorphism $\phi$. First we analyse the case in which the inclusion is a fixed domain. Then we will perturb the inclusion and study the arising boundary value problem and the dependence of a specific family of solutions upon the perturbation parameter $\phi$.
We consider a class of eigenvalue problems for polyharmonic operators, includingDirichlet and buckling-type eigenvalue problems. We prove an analyticity result for thedependence of the symmetric functions of the eigenvalues upon domain perturbations andcompute Hadamard-type formulas for the Frechét differentials. We also considerisovolumetric domain perturbations and characterize the corresponding critical domains forthe symmetric functions of the eigenvalues. Finally, we prove that balls are criticaldomains.