In this contribution, the impact of extreme environmental conditions in terms of energy-level radiation of protons on silicon–germanium (SiGe)-integrated circuits is experimentally studied. Canonical representative structures including linear (passive interconnects/antennas) and non-linear (low-noise amplifiers) are used as carriers for assessing the impact of aggressive stress conditions on their performances. Perspectives for holistic modeling and characterization approaches accounting for various interaction mechanisms (substrate resistivity variations, couplings/interferences, drift in DC and radio frequency (RF) characteristics) for active samples are down to allow for optimal solutions in pushing SiGe technologies toward applications with harsh and radiation-intense environments (e.g. space, nuclear, military). Specific design prototypes are built for assessing mission-critical profiles for emerging RF and mm-wave applications.