In this study, the implicit Crank–Nicolson finite-difference time-domain (CN-FDTD) method is applied to discretize the governing telegrapher's equations of a composite right-/left-handed (CRLH) coupled-line coupler. The unconditionally stable CN-FDTD is compared with the conventional leap-frog (LF) FDTD method. The results obtained from the CN-FDTD scheme show up to 10 times increase in the temporal step size, reflecting in a dramatic decrease in processing time; in addition to having a good agreement with the LF method and the measurements.