We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As the modular backbone of the technological revolution, data centers are essential. As the infrastructure of the twenty-first century, data centers must align with the challenges of twenty-first-century infrastructure. While data centers are far less power hungry than distributed computing, the technology revolution in the making will choke without a satisfactory solution of clean energy for scaling data centers. Key innovations in predictive intelligence make a world of PUE ratios near one likely. But absolute power draw will continue to grow the footprint of data centers on local power networks and their carbon intensity. Two key factors to overcome the clean energy barrier of scaling data centers are energy optimization via on-site production and intelligent location siting. For humanity to thrive in the digital age, data center infrastructure much be efficient, decarbonized, and resource neutral at scale.
In this chapter, we discuss the evolution of the field of ‘ethics of nuclear energy’, regarding its past, present and future. We will first review the history of this field in the previous four decades, focusing on new and emerging challenges of nuclear energy production and waste disposal, in light of several important developments. Four of the most pressing ethical challenges will be further reviewed in the chapter. First, what is a morally ‘acceptable’ nuclear energy production method, if we consider the existing and possible new technologies? Second, provided a new tendency to consider nuclear waste disposal with several countries, what would be the new ethical and governance challenges of these multinational collaborations? Third, how should we deal with the (safety) challenges of the new geographic distribution of nuclear energy, tilting towards emerging economies with less experience with nuclear technology? Fourth, nuclear energy projects engender highly emotional controversies. Neither ignoring the emotions of the public nor taking them as a reason to prohibit or restrict a technology – we call them technocratic populist pitfalls respectively – seem to be able to guide responsible policy making.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.