We provide an alternative view of some results in [1, 3, 11]. In particular, we prove that (1) if a continuous self-map of a compact metric space has the shadowing, then the union of the basins of terminal chain components is a dense $G_\delta $-subset of the space; and (2) if a continuous self-map of a locally connected compact metric space has the shadowing, and if the chain recurrent set is totally disconnected, then the map is almost chain continuous.