We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend the languages of both basic and graded modal logic with the infinity diamond, a modality that expresses the existence of infinitely many successors having a certain property. In both cases we define a natural notion of bisimilarity for the resulting formalisms, that we dub $\mathtt {ML}^{\infty }$ and $\mathtt {GML}^{\infty }$, respectively. We then characterise these logics as the bisimulation-invariant fragments of the naturally corresponding predicate logic, viz., the extension of first-order logic with the infinity quantifier. Furthermore, for both $\mathtt {ML}^{\infty }$ and $\mathtt {GML}^{\infty }$ we provide a sound and complete axiomatisation for the set of formulas that are valid in every Kripke frame, we prove a small model property with respect to a widened class of weighted models, and we establish decidability of the satisfiability problem.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.