Gliomas are highly invasive brain tumors that exhibit high and spatially heterogeneouscell proliferation and motility rates. The interplay of proliferation and migrationdynamics plays an important role in the invasion of these malignant tumors. We analyze theregulation of proliferation and migration processes with a lattice-gas cellular automaton(LGCA). We study and characterize the influence of the migration/proliferation dichotomy(also known as the “GO-or-Grow" mechanism) on avascular glioma invasion, in terms ofinvasion speed and width of the infiltration zone. We show that the invasive behavior ofthe (macroscopic) tumor colony is a highly complex phenomenon that cannot be extrapolatedby the sole knowledge of the (microscopic) individual cell phenotype.