Let µ be Radon measure on Rd which may be non doubling. The only condition that µ must satisfy is the size condition µ(B(x, r)) ≤ Crn for some fixed n є (0, d). Recently, Tolsa introduced the spaces RBMO(µ) and Hatb1.∞ (µ), which, in some ways, play the role of the classical spaces BMO and H1 in case u is a doubling measure. In this paper, the author considers the local versions of the spaces RBMO(µ) and Hatb1.∞ (µ) in the sense of Goldberg and establishes the connections between the spaces RBMO(µ) and Hatb1.∞ (µ) with their local versions. An interpolation result of linear operators is also given.