A better understanding of the persistence of jointed goatgrass seed in soil and its dormancy will lead to the development of more effective weed-management strategies. Three populations of jointed goatgrass were collected from winter wheat fields in Oregon, and grown together with the winter wheat variety ‘Madsen’ in nurseries at Moro and Pendleton, OR. Germination responses of jointed goatgrass and wheat seed were recorded over 14 d at 5/5, 15/10, 15/15, 25/15, 25/25, and 30/20 C day/night temperatures and a 12-h photoperiod. Because jointed goatgrass spikelets often contain two seed, primary and secondary seed germination values were recorded. Secondary seed germination was defined as 3-mm radicle protrusion, and primary seed germination was defined as 5-mm emergence of the second coleoptile. Jointed goatgrass secondary seed germinated when exposed to all temperature regimes. Jointed goatgrass secondary seed germination occurred 3 d earlier in temperature regimes involving 15 C compared to germination at 5/5, 25/25, and 30/20 C. Final germination values for jointed goatgrass secondary seed were greatest when seed were incubated at 25/15 C. Wheat seed germinated at all temperature regimes, although the onset of germination occurred 1 to 1.5 d later at 5/5 C compared to other temperature regimes. Jointed goatgrass primary seed germinated only at 15/10, 15/15, and 25/15 C, and maximum germination occurred at 25/15 C. Dormancy in jointed goatgrass might prevent germination of seed within freshly shattered spikelets until autumn when temperatures are low and moisture is available. Because final germination percentages in jointed goatgrass primary and secondary seed were less than 100%, additional research on factors regulating dormancy is needed.