We compared some fitness components of the wild squash species Cucurbita pepo spp. ovifera var. texana (C. texana) and three generations of hybrids (F1, BC1, and BC2) between C. texana and commercial transgenic squash CZW-3 over three consecutive years under field conditions of low (LDP) and high disease pressure (HDP) by Cucumber mosaic virus (CMV), Zucchini yellow mosaicvirus (ZYMV) and Watermelon mosaic virus (WMV). Transgenic squash CZW-3 expresses the coat protein (CP) genes of CMV, ZYMV, and WMV, and is resistant to these three aphid-borne viruses. Across all HDP trials, transgenic BC1 and BC2 hybrids expressing the three CP genes grew more vigorously, displayed resistance to CMV, ZYMV, and WMV, and produced a greater number of mature fruits and viable seeds than nontransgenic hybrid segregants and C. texana. Transgenic F1 hybrids behaved similarly to BC1 and BC2 hybrids but grew less vigorously than C. texana. In contrast, across all LDP trials, C. texana outperformed the transgenic and nontransgenic hybrid segregants. Further, only one back cross was necessary to recover individuals with most of the C. texana characteristics and yet maintain virus resistance. Our data suggest that C. texana acquiring CP transgenes upon hybridization and introgression could have a selective advantage if CMV, ZYMV, and WMV are severely limiting the growth and reproductibility of wild squash populations.