Migratory birds contribute to the movement of avian parasites between distant locations, thereby influencing parasite distribution and ecology. Here we analyse the prevalence, diversity and interaction patterns of Haemosporida parasites infecting Blackcap (Sylvia atricapilla) populations in a recently established migratory divide of southwestern Germany across 4 years. We hypothesize that the temporal and spatial isolation provided by 2 sympatric Blackcap breeding populations (migratory divide) might modify ecological interactions and thus create differences in the structure of the parasite community according to migratory route. We used a fragment of the mitochondrial DNA cytochrome b gene to determine haemosporidian haplotypes. We detected an overall infection prevalence of 70·3% (348 out of 495 blackcaps sampled from 2006 to 2009), and prevalence rates were significantly different among years and seasons. We observed a total of 27 parasite haplotypes infecting blackcaps, from them 6 new rare Haemoproteus haplotypes were found in 2 mixed infections. H. parabelopolskyi haplotypes SYAT01 (35·7%) and SYAT02 (20·8%) comprised most of the infections. An association analysis suggests that SYAT01 and SYAT02 are interacting negatively, implying that they are either competing directly for host resources, or indirectly by eliciting a cross-immune response. Molecular data show no clear difference between the parasite communities infecting blackcaps with different migratory routes, despite some temporal and spatial isolation between the two sympatric blackcap populations.