We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We examine the theory of connective algebraic K-theory, , defined by taking the −1 connective cover of algebraic K-theory with respect to Voevodsky's slice tower in the motivic stable homotopy category. We extend to a bi-graded oriented duality theory when the base scheme is the spectrum of a field k of characteristic zero. The homology theory may be viewed as connective algebraic G-theory. We identify for X a finite type k-scheme with the image of in , where is the abelian category of coherent sheaves on X with support in dimension at most n; this agrees with the (2n,n) part of the theory of connective algebraic K-theory defined by Cai. We also show that the classifying map from algebraic cobordism identifies with the universal oriented Borel-Moore homology theory having formal group law u + υ − βuυ with coefficient ring ℤ[β]. As an application, we show that every pure dimension d finite type k-scheme has a well-defined fundamental class [X]CK in ΩdCK(X), and this fundamental class is functorial with respect to pull-back for l.c.i. morphisms.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.