We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This succinct introduction to the fundamental physical principles of turbulence provides a modern perspective through statistical theory, experiments, and high-fidelity numerical simulations. It describes classical concepts of turbulence and offers new computational perspectives on their interpretation based on numerical simulation databases, introducing students to phenomena at a wide range of scales. Unique, practical, multi-part physics-based exercises use realistic data of canonical turbulent flows developed by the Stanford Center for Turbulence Research to equip students with hands-on experience with practical and predictive analysis tools. Over 20 case studies spanning real-world settings such as wind farms and airplanes, color illustrations, and color-coded pedagogy support student learning. Accompanied by downloadable datasets, and solutions for instructors, this is the ideal introduction for students in aerospace, civil, environmental, and mechanical engineering and the physical sciences studying a graduate-level one-semester course on turbulence, advanced fluid mechanics, and turbulence simulation.
This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. These run in both high- and low-dimensional environments and often have better results than traditional methods. Instead of a theoretical approach, it provides examples of how to apply these methods to real data using lithic and ceramic archaeological materials as case studies. A detailed explanation of how to process data in R (The R Project for Statistical Computing), as well as the respective code, are also provided in this Element.
This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. These operate in both high- and low-dimensional environments and often have better results than traditional methods. The basic principles and main methods are introduced with recommendations for when to use them.
In this paper, the results of an experimental investigation for a Y-shaped engine inlet are presented. The experiment is performed at subsonic flow conditions. The main focus is given to time-dependent total pressures measured at the aerodynamic interface plane. Distinctive frequencies carrying high energy contents of the fluctuating total pressures are given and the relation between time-dependent and time-average performance parameters is presented. The cross-correlation coefficients of the high frequency probe readings distributed through the aerodynamic interface plane are also investigated.
In order to minimize the risk of infection during the Covid-19 pandemic, peopleare recommended to keep interpersonal distance (e.g., 1 m, 2 m, 6 feet), washtheir hands frequently, limit social contacts and sometimes to wear a face mask.We investigated how people judge the protective effect of interpersonal distanceagainst the Corona virus. The REM model, based on earlier empirical studies,describes how a person’s virus exposure decreases with the square of thedistance to another person emitting a virus in a face to face situation. In acomparison with model predictions, most participants underestimated theprotective effect of moving further away from another person. Correspondingly,most participants were not aware of how much their exposure would increase ifthey moved closer to the other person. Spectral analysis of judgments showedthat a linear ratio model with the independent variable = (initialdistance)/(distance to which a person moves) was the most frequently usedjudgment rule. It leads to insensitivity to change in exposure compared with theREM model. The present study indicated a need for information about the effectsof keeping interpersonal distance and about the importance of virus carryingaerosols in environments with insufficient air ventilation. Longer conversationsemitting aerosols in a closed environment may lead to ambient concentrations ofaerosols in the air that no distance can compensate for. The results of thestudy are important for risk communications in countries where people do notwear a mask and when authorities consider removal of a recommendation or arequirement to wear a face mask.
We used correlation and spectral analyses to investigate the cognitive structures and processes producing biased judgments. We used 5 different sets of driving problems to exemplify problems that trigger biases, specifically: (1) underestimation of the impact of occasional slow speeds on mean speed judgments, (2) overestimation of braking capacity after a speed increase, (3) the time saving bias (overestimation of the time saved by increasing a high speed further, and underestimation of time saved when increasing a low speed), (4) underestimation of increase of fatal accident risk when speed is increased, and (5) underestimation of the increase of stopping distance when speed is increased. The results verified the predicted biases. A correlation analysis found no strong links between biases; only accident risk and stopping distance biases were correlated significantly. Spectral analysis of judgments was used to identify different decision rules. Most participants were consistent in their use of a single rule within a problem set with the same bias. The participants used difference, average, weighed average and ratio rules, all producing biased judgments. Among the rules, difference rules were used most frequently across the different biases. We found no personal consistency in the rules used across problem sets. The complexity of rules varied across problem sets for most participants.
We consider the spectral analysis of several examples of bilateral birth–death processes and compute explicitly the spectral matrix and the corresponding orthogonal polynomials. We also use the spectral representation to study some probabilistic properties of the processes, such as recurrence, the invariant distribution (if it exists), and the probability current.
The stability of the Christoffel-Darboux kernel under small perturbations of the generating measure is established via precise quantitative bounds. Trace-class perturbations of the Hessenberg matrix attached to a 2D measure are linked to the asymptotic invariance of the Christoffel function, in an exact separation algorithm of outliers from clouds formed by bounded point evaluations for complex analytic functions.
Outside the immediate statistical applications, two notable implications of the Christoffel-Darboux kernel are sketched: on the effective semialgebraic approximation of nonsmooth functions and on the spectral analysis of Koopman's operator attached to some intricate dynamical systems.
The clinical value of EEG in Alzheimer’s disease (AD) trials is increasingly recognized, offering a practical, patient-friendly assessment of neurophysiological response to novel treatment. Its non-invasive, task-independent, and relatively straightforward mode of operation make it a suitable candidate for longitudinal trials in patients with cognitive impairment. The visual analysis in EEG has led to the well-described process of diffuse oscillatory slowing in AD. It is complemented by advanced quantitative analysis methods, giving a more accurate and diverse overview along the AD disease course, such as loss of functional connectivity and functional network structure. Many of these neurophysiological changes are linked to AD pathology and cognitive decline, and recent trials have implicated the practical feasibility and potency of EEG-based markers. In this chapter, we discuss what EEG analysis techniques are most useful for AD research, the hallmark EEG changes in AD, and insights from recent trials assessing the effect of new compounds on EEG activity. We offer a practical view on the most essential elements for obtaining consistent data quality in multi-center trials.
Block-structured Markov chains model a large variety of queueing problems and have many important applications in various areas. Stability properties have been well investigated for these Markov chains. In this paper we will present transient properties for two specific types of block-structured Markov chains, including M/G/1 type and GI/M/1 type. Necessary and sufficient conditions in terms of system parameters are obtained for geometric transience and algebraic transience. Possible extensions of the results to continuous-time Markov chains are also included.
Leafy spurge (Euphorbia esula L.) and purple loosestrife (Lythrum salicaria L.) are invasive weeds that displace native vegetation. Herbicides are often applied to these weeds during flowering, so it would be ideal to identify them early in the season, possibly by the leaves. This paper evaluates the spectral separability of the inflorescences and leaves of these plants from surrounding vegetation. Leafy spurge, purple loosestrife, and surrounding vegetation were collected from sites in southeastern North Dakota and subjected to spectral analysis. Partial least-squares discriminant analysis (PLS-DA) was used to separate the spectral signatures of these weeds in the visible and near-infrared wavelengths. Using PLS-DA, the weeds were discriminated from their surroundings with R2 values of 0.86 to 0.92. Analysis of the data indicated that the bands contributing the most to each model were in the red and red-edge spectral regions. Identifying these weeds by the leaves allows them to be mapped earlier in the season, providing more time for herbicide application planning. The spectral signatures identified in this proof of concept study are the first step before using ultra–high resolution aerial imagery to classify and identify leafy spurge and purple loosestrife.
The lithostratigraphic characteristics of the iconic Blue Lias Formation of southern Britain are influenced by sedimentation rates and stratigraphic gaps. Evidence for regular sedimentary cycles is reassessed using logs of magnetic susceptibility from four sites as an inverse proxy for carbonate content. Standard spectral analysis, including allowing for false discovery rates, demonstrates several scales of regular cyclicity in depth. Bayesian probability spectra provide independent confirmation of at least one scale of regular cyclicity at all sites. The frequency ratios between the different scales of cyclicity are consistent with astronomical forcing of climate at the periods of the short eccentricity, obliquity and precession cycles. Using local tuned time scales, 62 ammonite biohorizons have minimum durations of 0.7 to 276 ka, with 94% of them <41 ka. The duration of the Hettangian Stage is ≥2.9 Ma according to data from the West Somerset and Devon/Dorset coasts individually, increasing to ≥3.7 Ma when combined with data from Glamorgan and Warwickshire. A composite time scale, constructed using the tuned time scales plus correlated biohorizon limits treated as time lines, allows for the integration of local stratigraphic gaps. This approach yields an improved duration for the Hettangian Stage of ≥4.1 Ma, a figure that is about twice that suggested in recent time scales.
Using remotely sensed land-cover data in 1994 and 2014, and cross-sectional survey data in 2014, this study examines the association between land use and cover change and agricultural productivity in northern Ghana. We document a significant expansion of crop land and settlements (productive use) at the expense of natural vegetation cover. Land areas converted from natural cover to productive use have higher maize yield (0.17 tons per hectare) and harvest value (1,021 Ghanaian Cedi) compared with those converted from bare soil to productive cover. Moreover, areas that were covered by shrubs or savannah in 1994 were more productive in 2014 relative to bare soils in 1994. Although our data do not allow us to establish causality, the evidence suggests the importance of past land-cover conditions in affecting current agricultural performance, especially in resource-stricken settings where conservation and restoration practices are not as common.
The purpose of this study was to clarify the association between hand, foot, and mouth disease (HFMD) epidemics and meteorological conditions. We used HFMD surveillance data of all 47 prefectures in Japan from January 2000 to December 2015. Spectral analysis was performed using the maximum entropy method (MEM) for temperature-, relative humidity-, and total rainfall-dependent incidence data. Using MEM-estimated periods, long-term oscillatory trends were calculated using the least squares fitting (LSF) method. The temperature and relative humidity thresholds of HFMD data were estimated from the LSF curves. The average temperature data indicated a lower threshold at 12 °C and a higher threshold at 30 °C for risk of HFMD infection. Maximum and minimum temperature data indicated a lower threshold at 6 °C and a higher threshold at 35 °C, suggesting a need for HFMD control measures at temperatures between 6 and 35 °C. Based on our findings, we recommend the use of maximum and minimum temperatures rather than the average temperature, to estimate the temperature threshold of HFMD infections. The results obtained might aid in the prediction of epidemics and preparation for the effect of climatic changes on HFMD epidemiology.
In this paper we seek to characterize the robustness of the ENSO/soybean price relationship and to determine whether it has practical economic content. If such a meaningful relationship exists, the implications could be profound for commodity traders and for public sector investments in climate forecasting capabilities. Also, the validity of economic evaluations of climate impacts and climate forecasts based on ENSO-price independence would come into question. Our findings suggest a relationship between interannual climate and soybean prices, although we are not able to attribute the relationship to ENSO or to say that ENSO is economically important.
Disease detection and control is thus one of the main objectives of vineyard research in France. Monitoring diseases manually is fastidious and time consuming, so current research aims to develop an automatic detection of vineyard diseases. This project explored the use of a high-resolution multi-spectral camera embedded on a UAV (Unmanned Aerial Vehicle) to identify the infected zones in a field. In-field spectrometry studies were performed to identify the best spectral bands for the sensor design. The best models were found to be the function of the grapevine variety considered and the 520-600-650-690-730-750-800 nm bands were found to be the most efficient for all types of grapevines, with an overall classification accuracy of more than 94%.
Tick-borne encephalitis (TBE) is peculiar due to its unstable dynamics with profound inter-annual fluctuations in case numbers – a phenomenon not well understood to date. Possible reasons – apart from variable human contact with TBE foci – include external factors, e.g. climatic forcing, autonomous oscillations of the disease system itself, or a combined action of both. Spectral analysis of TBE data from six regions of central Europe (CE) revealed that the ostensibly chaotic dynamics can be explained in terms of four superposed (quasi-)periodical oscillations: a quasi-biennial, triennial, pentennial, and a decadal cycle. These oscillations exhibit a high degree of regularity and synchrony across CE. Nevertheless, some amplitude and phase variations are responsible for regional differences in incidence patterns. In addition, periodic changes occur in the degree of synchrony in the regions: marked in-phase periods alternate with rather off-phase periods. Such a feature in the disease dynamics implies that it arises as basically diverging self-oscillations of local disease systems which, at intervals, receive synchronizing impulses, such as periodic variations in food availability for key hosts driven by external factors. This makes the disease dynamics synchronized over a large area during peaks in the synchronization signal, shifting to asynchrony in the time in between.
We investigated the seasonality of age-specific tuberculosis (TB) in Japan. To allow the development of TB control strategies for different age groups we used a time-series analysis, including a spectral analysis and least squares method, to analyse the monthly age-specific numbers of newly registered cases of all forms of active TB in Japan from January 1998 to December 2013. The time-series data are reported in 10-year age groups: 0–9, 10–19, …, 70–79, and ⩾80 years. We defined the contribution ratio of the 1-year cycle, Q1, as the contribution of the amplitude of a 1-year cycle to the whole amplitude of the time-series data. The Q1 values in the age groups corresponding to adolescence and middle life (10–39 years) and old age (⩾70 years) were high. The peaks in the active TB epidemics for the ⩾70 years age group occurred in August and September, 1–2 months behind the peaks for the 10–39 years age group (June and July). An active TB epidemic might be attributable to travel by public transport and irregular employment in the 10–39 years age group and immune system suppression by low winter temperatures in the ⩾70 years age group.