We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a commutative unital ring R, we show that the finiteness length of a group G is bounded above by the finiteness length of the Borel subgroup of rank one
$\textbf {B}_2^{\circ }(R)=\left ( \begin {smallmatrix} * & * \\ 0 & * \end {smallmatrix}\right )\leq \operatorname {\textrm {SL}}_2(R)$
whenever G admits certain R-representations with metabelian image. Combined with results due to Bestvina–Eskin–Wortman and Gandini, this gives a new proof of (a generalization of) Bux’s equality on the finiteness length of S-arithmetic Borel groups. We also give an alternative proof of an unpublished theorem due to Strebel, characterizing finite presentability of Abels’ groups
$\textbf {A}_n(R) \leq \operatorname {\textrm {GL}}_n(R)$
in terms of n and
$\textbf {B}_2^{\circ }(R)$
. This generalizes earlier results due to Remeslennikov, Holz, Lyul’ko, Cornulier–Tessera, and points out to a conjecture about the finiteness length of such groups.
We prove that the homology of unitary groups over rings of S-integers in number fields stabilizes. Results of this kind are well known to follow from the high acyclicity of ad-hoc polyhedra. Given this, we exhibit two simple conditions on the arithmetic of hermitian forms over a ring A relatively to an anti-automorphism which, if they are satisfied, imply the stabilization of the homology of the corresponding unitary groups. When R is a ring of S-integers in a number field K, and A is a maximal R-order in an associative composition algebra F over K, we use the strong approximation theorem to show that both of these properties are satisfied. Finally we take a closer look at the case of On(ℤ[½]).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.