This paper experimentally studies flow separation and aerodynamic performance of a NACA633018 wing using a series of piezoelectric-driven disks, which are located at 12% chord length from the leading edge to generate a spanwise-distributed synthetic jets to excite the passing flow. The experiment is conducted in an open-type wind tunnel with Reynolds numbers (Re) of 8 × 104 and 1.2 × 105, respectively, based on the wing chord. The oscillations of the synthetic jet actuators (SJAs) disturb the neighboring passage flow on the upper surface of the wing before the laminar separation takes place. The disturbances of energy influence the downstream development of boundary layers to eliminate or reduce the separation bubble on the upper surface of the wing. Significant lift increase and drag decrease are found at the tested Reynolds number of 8 × 104 due to the actuators excitation. Furthermore, the effect of drag also reduces dominant with increasing Reynolds number, but the increase on lift is reduced with the Reynolds number increased.