We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct analogues of Rankin–Selberg integrals for Speh representations of the general linear group over a $p$-adic field. The integrals are in terms of the (extended) Shalika model and are expected to be the local counterparts of (suitably regularized) global integrals involving square-integrable automorphic forms and Eisenstein series on the general linear group over a global field. We relate the local integrals to the classical ones studied by Jacquet, Piatetski-Shapiro and Shalika. We also introduce a unitary structure for Speh representation on the Shalika model, as well as various other models including Zelevinsky’s degenerate Whittaker model.
We study the Rankin–Selberg integral for a pair of representations of ${\rm SO}_{2l}\times {\rm GL}_{n}$, where ${\rm SO}_{2l}$ is defined over a local non-Archimedean field and is either split or quasi-split. The integrals span a fractional ideal, and its unique generator, which contains any pole which appears in the integrals, is called the greatest common divisor (gcd) of the integrals. We describe the properties of the gcd and establish upper and lower bounds for the poles. In the tempered case we can relate it to the $L$-function of the representations defined by Shahidi. Results of this work may lead to a gcd definition for the $L$-function.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.