Let $n\geq 1$ be an integer and $f$ be an arithmetical function. Let $S=\{x_{1},\ldots ,x_{n}\}$ be a set of $n$ distinct positive integers with the property that $d\in S$ if $x\in S$ and $d|x$. Then $\min (S)=1$. Let $(f(S))=(f(\gcd (x_{i},x_{j})))$ and $(f[S])=(f(\text{lcm}(x_{i},x_{j})))$ denote the $n\times n$ matrices whose $(i,j)$-entries are $f$ evaluated at the greatest common divisor of $x_{i}$ and $x_{j}$ and the least common multiple of $x_{i}$ and $x_{j}$, respectively. In 1875, Smith [‘On the value of a certain arithmetical determinant’, Proc. Lond. Math. Soc. 7 (1875–76), 208–212] showed that $\det (f(S))=\prod _{l=1}^{n}(f\ast \unicode[STIX]{x1D707})(x_{l})$, where $f\ast \unicode[STIX]{x1D707}$ is the Dirichlet convolution of $f$ and the Möbius function $\unicode[STIX]{x1D707}$. Bourque and Ligh [‘Matrices associated with classes of multiplicative functions’, Linear Algebra Appl. 216 (1995), 267–275] computed the determinant $\det (f[S])$ if $f$ is multiplicative and, Hong, Hu and Lin [‘On a certain arithmetical determinant’, Acta Math. Hungar. 150 (2016), 372–382] gave formulae for the determinants $\det (f(S\setminus \{1\}))$ and $\det (f[S\setminus \{1\}])$. In this paper, we evaluate the determinant $\det (f(S\setminus \{x_{t}\}))$ for any integer $t$ with $1\leq t\leq n$ and also the determinant $\det (f[S\setminus \{x_{t}\}])$ if $f$ is multiplicative.