The purpose of this investigation was to expand upon the limited existing research examining the test–retest reliability, cross-sectional validity and longitudinal validity of a sample of bioelectrical impedance analysis (BIA) devices as compared with a laboratory four-compartment (4C) model. Seventy-three healthy participants aged 19–50 years were assessed by each of fifteen BIA devices, with resulting body fat percentage estimates compared with a 4C model utilising air displacement plethysmography, dual-energy X-ray absorptiometry and bioimpedance spectroscopy. A subset of thirty-seven participants returned for a second visit 12–16 weeks later and were included in an analysis of longitudinal validity. The sample of devices included fourteen consumer-grade and one research-grade model in a variety of configurations: hand-to-hand, foot-to-foot and bilateral hand-to-foot (octapolar). BIA devices demonstrated high reliability, with precision error ranging from 0·0 to 0·49 %. Cross-sectional validity varied, with constant error relative to the 4C model ranging from −3·5 (sd 4·1) % to 11·7 (sd 4·7) %, standard error of the estimate values of 3·1–7·5 % and Lin’s concordance correlation coefficients (CCC) of 0·48–0·94. For longitudinal validity, constant error ranged from −0·4 (sd 2·1) % to 1·3 (sd 2·7) %, with standard error of the estimate values of 1·7–2·6 % and Lin’s CCC of 0·37–0·78. While performance varied widely across the sample investigated, select models of BIA devices (particularly octapolar and select foot-to-foot devices) may hold potential utility for the tracking of body composition over time, particularly in contexts in which the purchase or use of a research-grade device is infeasible.