The optimality of the one step look-ahead stopping rule is shown to hold under conditions different from those discussed by Chow, Robbins and Seigmund [5]. These results are corollaries of the following theorem: Let {Xn, n = 0, 1, …}; X0 = x be a discrete-time homogeneous Markov process with state space (E, ℬ). For any ℬ-measurable function g and α in (0, 1], define Aαg(x) = αExg(X1) – g(x) to be the infinitesimal generator of g. If τ is any stopping time satisfying the conditions: Ex[αNg(XN)I(τ > N)]→0 as as N → ∞, then Applications of the results are considered.