The paper presents a proof of the Brylinski conjecture for compact Kähler orbifolds. The result is a corollary of the foliated version of the Mathieu theorem on symplectic harmonic representations of de Rham cohomology classes. The proofs are based on the idea of representing an orbifold as the leaf space of a Riemannian foliation and on the correspondence between foliated and holonomy invariant objects for foliated manifolds.