Let $A({{n}_{1}},\,{{n}_{2}},\ldots ,\,{{n}_{m}}-1)$ be the normalized Fourier coefficients of a Maass cusp form on $\text{GM(}m\text{)}$. In this paper, we study the cancellation of $A({{n}_{1}},\,{{n}_{2}},\ldots ,\,{{n}_{m}}-1)$ over Beatty sequences.