Increased amino acid content in high-oil maize (Zea mays L.) grain may add further value to its use in livestock rations, especially if this enhanced amino acid content is consistent across varying growing conditions. Most high-oil maize (HOM) grown in the USA utilizes the TopCross system which involves planting a blend (TC Blend) of two types of maize. Field experiments and on-farm studies were conducted in 1997 and 1998 to compare the amino acid profile of grain from HOM TC Blends with that of their normal-oil maize (NOM) counterparts across a range of production environments in Ohio. In 1997, the composition of four amino acids (lysine, methionine, glycine and arginine) was significantly higher in HOM compared to NOM grain. In 1998, nine amino acids (lysine, methionine, glycine, arginine, asparagine, threonine, serine, cysteine and tryptophan) were greater in HOM than in NOM grain. Lysine and methionine content in HOM grain averaged 12 and 13% higher than in NOM grain in both years. The number of amino acids significantly affected by the grain parent was greater than that for maize type each year. A significant maize type × grain parent interaction for a limited number of amino acids suggest that TC Blend grain parents may affect the consistency of amino acid composition in HOM grain. Results of this study demonstrate that the levels of several amino acids, including economically important lysine and methionine, were consistently greater in HOM than in NOM grain across a range of production environments. Modelling with livestock ration balancing software showed that the additional amino acids and oil in HOM added 12–20% to its value as livestock feed.