We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Building on the governing equations and spectral tools introduced in earlier chapters, we analyze the energy cascade, which describes the transfer of turbulent kinetic energy from large to small eddies. This includes an estimate of the energy dissipation rate, as well as the characteristic length and time scales of the smallest-scale motions. Nonlinearity in the Navier-Stokes equations is responsible for triadic interactions between wavenumber triangles that drive energy transfer between scales. Empirical observations suggest that the net transfer of energy occurs from large to small scales. In systems where the large scales are sufficiently separated from the small scales, an inertial subrange emerges in an intermediate range of scales where the dynamics are scale invariant. Kolmogorov’s similarity hypotheses and the ensuing expressions for the inertial-subrange energy spectrum and viscous scales are introduced. The Kolmogorov spectrum for the inertial subrange, which corresponds to a -5/3 power law, is a celebrated result in turbulence theory. We further discuss key characteristic turbulence scales including the Taylor microscale and Batchelor scale.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.