Incorporation of Mg in metalorganic vapour phase epitaxy (MOVPE) GaN has been investigated, using two different Mg precursors: bis-methylcyclopentadienyl magnesium [(MeCp)2Mg] and Solution bis-cyclopentadienyl magnesium [Solution Cp2Mg]. SIMS analysis reveals an increased (two fold) efficiency of Mg incorporation for Solution Cp2Mg as compared to (MeCp)2Mg. These results are attributed to the stronger interaction of (MeCp)2Mg with NH3, leading to the formation of alkylmagnesium amine adducts, and a reduced effective Mg surface concentration. A decreased GaN growth rate with increasing Mg fluxes is also reported for both precursors. This effect is more pronounced for Solution Cp2Mg indicating that incorporation of Mg in the lattice proceeds via the capture of Mg into group III sites, and that the supply of Mg from the surface is reduced in the case when (MeCp)2Mg is used.