We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cognitive inhibition deficits have previously been found in suicide attempters. This study examined the neural basis for these deficits in depressed patients with and without a history of suicidal behavior.
Method
Functional magnetic resonance imaging was used to measure brain activation during the Go/No-Go response inhibition task in 25 unmedicated and depressed middle-aged suicide attempters, 22 unmedicated depressed patient controls with no personal or family history of suicidal behavior, and 27 healthy controls. Whole-brain analyses were conducted with SPM12.
Results
Suicide attempters exhibited an elevated number of commission errors relative to both control groups. However, suicide attempters did not differ from patient controls in terms of brain activation for any contrast. Analyses showed a significant association between depression and brain activation in the left inferior frontal gyrus and medial thalamus during Go v. No-Go, and in the bilateral parietal cortex and left orbitofrontal cortex during No-Go v. baseline. These regions were correlated with psychological pain, suicidal ideation and global functioning. There was no association between brain activation and personal histories of suicidal act.
Conclusions
Our study suggests that deficits in cognitive inhibition, in relation to the inferior frontal gyrus, thalamus, orbitofrontal cortex and parietal cortex, are related to the depressive state and not specifically to suicide vulnerability. We hypothesize that state-related deficits may add to trait-like cognitive impairments to facilitate suicidal acts. These different types of cognitive impairments may necessitate different therapeutic strategies for the prevention of suicide.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.