Closed-loop kinematics of a dual-arm robot (DAR) often induces motion conflict. Control formulation is increasingly difficult in face of actuator failures. This article presents a new approach for fault-tolerant control of DARs based on advanced sliding mode control. A comprehensive fractional-order model is proposed taking nonlinear viscous and viscoelastic friction at the joints into account. Using integral fast terminal sliding mode control and fractional calculus, we develop two robust controllers for robots subject to motor faults, parametric uncertainties, and disturbances. Their merits rest with their strong robustness, speedy finite-time convergence, shortened reaching phase, and flexible selection of derivative orders. To avoid the need for full knowledge of faults, robot parameters, and disturbances, two versions of the proposed approach, namely adaptive integral fractional-order fast terminal sliding mode control, are developed. Here, an adaptation mechanism is equipped for estimating a common representative of individual uncertainties. Simulation and experiment are provided along with an extensive comparison with existing approaches. The results demonstrate the superiority of the proposed control technique. The robot performs well the tasks with better responses (e.g., with settling time reduced by at least 16%).