We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Wu and Shi [‘A note on k-Galois LCD codes over the ring
$\mathbb {F}_q + u\mathbb {F}_q$
’, Bull. Aust. Math. Soc.104(1) (2021), 154–161] studied
$ k $
-Galois LCD codes over the finite chain ring
$\mathcal {R}=\mathbb {F}_q+u\mathbb {F}_q$
, where
$u^2=0$
and
$ q=p^e$
for some prime p and positive integer e. We extend the results to the finite nonchain ring
$ \mathcal {R} =\mathbb {F}_q+u\mathbb {F}_q+v\mathbb {F}_q+uv\mathbb {F}_q$
, where
$u^2=u,v^2=v $
and
$ uv=vu $
. We define a correspondence between the
$ l $
-Galois dual of linear codes over
$ \mathcal {R} $
and the
$ l $
-Galois dual of their component codes over
$ \mathbb {F}_q $
. Further, we construct Euclidean LCD and
$ l $
-Galois LCD codes from linear codes over
$ \mathcal {R} $
. We prove that any linear code over
$ \mathcal {R} $
is equivalent to a Euclidean code over
$\mathbb {F}_q$
with
$ q>3 $
and an
$ l $
-Galois LCD code over
$ \mathcal {R}$
with
$0<l<e$
and
$p^{e-l}+1\mid p^e-1$
. Finally, we investigate MDS codes over
$ \mathcal {R}$
.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.