Apyrases (ATP-diphosphohydrolase) comprise a ubiquitous class of glycosylated nucleotidases that hydrolyse extracellular ATP and ADP to orthophosphate and AMP. One class of newly-described, Ca2+-dependent, salivary apyrases known to counteract blood-clotting, has been identified in haematophagous arthropods. Herein, we have identified a gene (Oos-apy-1) encoding a protein that structurally conforms to the Ca2+-activated apyrase from the bed bug, Cimex lectularius, by immunologically screening an Ostertagia L4 cDNA expression library. The expressed protein (rOos-APY-1) was biochemically functional in the presence of Ca2+ only, with greatest activity on ATP, ADP, UTP and UDP. Host antibodies to the fusion protein appeared as early as 14 days post-infection (p.i.) and increased through 30 days p.i. Immunohistochemical and Western blot analyses demonstrated that the native Oos-APY-1 protein is present in the glandular bulb of the oesophagus and is confined to the L4. A putative signal sequence at the N-terminus and near 100% identity with a Teladorsagia circumcincta L4 secreted protein is consistent with the native protein being secreted at the cellular level. Predicated upon substrate specificity, the native protein may be used by the parasite to control the levels of host extracellular nucleotides released by locally-damaged tissues in an effort to modulate immune intervention and inflammation.