We now understand that many different types of DNA structural polymorphisms contribute to functional diversity of plant genomes, including single nucleotide polymorphisms, insertions of retrotransposons and DNA transposons, including Helitrons carrying pseudogenes, and other types of insertion–deletion polymorphisms, many of which may contribute to the phenotype by affecting gene expression through a variety of mechanisms including those involving non-coding RNAs. These polymorphisms can now be probed with tools such as array comparative genomic hybridization and, most comprehensively, genomic sequencing. Rapid developments in next generation sequencing will soon make genomic sequencing of germplasm collections a reality. This will help eliminate an important difficulty in the estimation of genetic relationships between accessions caused by ascertainment bias. Also, it has now become obvious that epigenetic differences, such as cytosine methylation, also contribute to the heritable phenotype, although detailed understanding of their transgenerational stability in crop species is lacking. The degree of linkage disequilibrium of epialleles with DNA sequence polymorphisms has important implications to the analysis of genetic diversity. Epigenetic marks in complete linkage disequilibrium (LD) with DNA polymorphisms do not add additional diversity information. However, epialleles in partial or low LD with DNA sequence alleles constitute another layer of genetic information that should not be neglected in germplasm analysis, especially if they exhibit transgenerational stability.