We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dietary patterns have been pointed out as useful diet quality indicators, but evidence about their relationship to metabolic phenotypes is still scarce. Thus, the present study aimed to verify the relationship between dietary patterns and metabolic phenotypes in Brazilian adults.
Design:
Cross-sectional study. A food consumption frequency questionnaire assessed food consumption profiles. Metabolic phenotypes were defined based on the criteria of the National Health and Nutrition Examination Survey: overweight or normal weight and metabolically healthy (MHOW and MHNW) or unhealthy (MUOW and MUNW). Dietary patterns were established through exploratory factor analysis and principal component analysis. The associations were tested using multinomial logistic regression.
Setting:
Viçosa, Minas Gerais, Brazil.
Participants:
Individuals (n 896) aged 20–59 years of both sexes, selected using probabilistic sampling.
Results:
Three dietary patterns were identified: Unhealthy pattern (alcoholic beverages, oils and fats, condiments, soda and juice, sugars and sweets, snacks, and meat and derivatives), Traditional pattern (culinary preparations, beans, milk and dairy products, and coffee and tea) and Healthy pattern (vegetables and fruits, whole grains, chicken and fish, and skimmed milk). Unhealthy pattern was positively associated with the MHOW and MUOW phenotypes in the fourth quartile (OR = 1·84; 95 % CI 1·06, 3·22) and in the third (OR = 1·94; 95 % CI 1·11, 3·39) and fourth (OR = 2·56; 95 % CI 1·41, 4·64) quartiles of consumption, respectively. Healthy pattern was also associated with these phenotypes.
Conclusions:
Both the pattern comprising energy-dense foods and the healthier pattern were associated with overweight phenotypes among Brazilian adults.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.