Pulsed laser induced plasma in water produces multiple bubbles with the passage of laser pulse. Shadowgraphy and beam deflection set-up is used to study the temporal and spatial evolution of these bubbles as a function of distance from the laser focus. The formation of multiple bubbles, bubble coalescence, and their effect onto cavity dynamics is reported. Bubble radius and the corresponding velocities from shadowgraphy is used to calculate the maximum gas pressure inside the bubble using Neppiras model. The maximum pressure inside the cavity is found to be 0.4 MPa at the laser focus.