Although previous studies have highlighted the inflammatory responses of fish infected with parasites and exposed to pollutants, very little is known about how these two stressors interact within the fish. In this review, which also contains original data, the effect of these two parameters on the fish inflammatory response is assessed and, in particular, the role of apoptosis and the acute phase protein, C reactive protein, is evaluated. In Cyprinus carpio exposed to 0·5 mg NH4+ l−1 or 0·1 mg Cd2+ l−1 and experimentally infected with the blood fluke, Sanguinicola inermis, the pollutant type and the order in which the fish experiences the parasite and toxicant, significantly affects the ultrastructural appearance and cellular content of the pronephros and thymus. This is reflected in the intensity of infection where the pollutant appears to have less effect on an established infection. Both stressors, pollutant and infection, may mediate their effects via the endocrine system. Studies have revealed that cortisol at 100 ng ml−1 is able to induce apoptosis in pronephric cells of carp and that an increase in apoptosis is associated with an increase in phagocytosis in this immune organ. In addition, C reactive protein, which is used as a biomarker of the inflammatory response in humans and other mammals, is evaluated as a possible indicator of physiological states in fish exposed to pathogens and pollutants.