We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter discusses two different approaches to describing fluid flow: a Lagrangian approach (following a fluid element as it moves) and a Eulerian approach (watching fluid pass through a fixed volume in space). Understanding each of these descriptions of flow is needed to fully understand the dynamics of fluids. This chapter is devoted to diving into the differences between the two descriptions of fluid motion. Understanding this chapter will help tremendously in the understanding of the upcoming chapters when the Navier–Stokes equations and energy equation are discussed. This chapter will introduce the material derivative. It is extremely important to understand this derivative before the Navier–Stokes equations themselves are tackled.
on the space interval (0, 1) with two sets of the boundary conditions: the Dirichlet and periodic ones. For both situations we prove that there exists the unique H1 bounded trajectory of this equation defined for all t ∈ ℝ. Moreover we demonstrate that this trajectory attracts all trajectories both in pullback and forward sense. We also prove that for the Dirichlet case this attraction is exponential.
We are interested in the Korteweg–de Vries (KdV), Burgers and Whitham limits for a spatially periodic Boussinesq model with non-small contrast. We prove estimates of the relations between the KdV, Burgers and Whitham approximations and the true solutions of the original system that guarantee these amplitude equations make correct predictions about the dynamics of the spatially periodic Boussinesq model over their natural timescales. The proof is based on Bloch wave analysis and energy estimates and is the first justification result of the KdV, Burgers and Whitham approximations for a dispersive partial differential equation posed in a spatially periodic medium of non-small contrast.
We present a reduced basis offline/online procedure for viscous Burgers initial boundaryvalue problem, enabling efficient approximate computation of the solutions of thisequation for parametrized viscosity and initial and boundary value data. This procedurecomes with a fast-evaluated rigorous error bound certifying the approximation procedure.Our numerical experiments show significant computational savings, as well as efficiency ofthe error bound.
In this paper, we study the stabilization of a two-dimensional Burgers equation around a stationary solution by a nonlinear feedback boundary control. We are interested in Dirichlet and Neumann boundary controls. In the literature, it has already been shown that a linear control law, determined by stabilizing the linearized equation, locally stabilizes the two-dimensional Burgers equation. In this paper, we define a nonlinear control law which also provides a local exponential stabilization of the two-dimensional Burgers equation. We end this paper with a few numerical simulations, comparing the performance of the nonlinear law with the linear one.
A class of limit theorems involving asymptotic normality is derived for stationary processes whose spectral density has a singular behavior near frequency zero. Generally these processes have ‘long-range dependence’ but are generated from strongly mixing processes by a fractional integral or derivative transformation. Some related remarks are made about random solutions of the Burgers equation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.