Direct numerical simulation (DNS) is performed to explore turbulent Rayleigh–Bénard convection in spherical shells. Our simulations cover six distinct values of radius ratio, $\eta = r_i/r_o = 0.2$, 0.3, 0.4, 0.5, 0.6 and 0.8, under the assumption of a centrally condensed mass with gravity profile $g \sim 1/r^{2}$; where $r_i$, $r_o$ and $r$ denote the inner shell radius, the outer shell radius and the local radial coordinate, respectively. The Prandtl number is kept constant at unity while the Rayleigh number ($Ra$) is varied from $3 \times 10^{3}$ to $5 \times 10^8$. Our primary aim is to analyze how the radius ratio influences the global transport properties and flow physics. To gain insights into the scaling behaviour of the Nusselt number ($Nu$) and the Reynolds number ($Re$) with respect to $Ra$ and $\eta$, we apply the Grossmann–Lohse (GL) theory (Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56) to the system. It is observed that the scaling exponents for $Nu$ and $Re$ in relation to $Ra$ are more significant for smaller $\eta$ values, suggesting that the simulations with smaller $\eta$ reach the classical $Nu\sim Ra^{1/3}$ regime at a relatively lower $Ra$. This observation could also imply the systems with smaller $\eta$ might transition to the ultimate regime earlier at a smaller $Ra$. Based on our extensive DNS data, we establish that the thickness of the inner thermal boundary, $\lambda _{\vartheta }^{i}$, follows a scaling relationship of $\lambda _{\vartheta }^{i} \sim \eta ^{1/2}$. This relationship, in turn, leads to a scaling law for $Nu$ in the form of $Nu \sim f(\eta ) Ra^{\gamma }$, where the function $f(\eta )$ is defined as $f(\eta ) = {\eta ^{1/2}}/{(1+\eta ^{4/3})}$, and the exponent $\gamma$ depends on both $Ra$ and $\eta$. Additionally, we characterize and explain the asymmetry in the velocity field by introducing the separate Reynolds numbers for the inner and outer shells. The asymmetry of the kinetic and thermal energy dissipation rates in the inner and outer boundary layers (BLs) is also quantified.