The study aimed to show the chromosomal copy number variations responsible for the aetiology in patients with isolated conotruncal heart anomaly by array comparative genomic hybridisation and identify candidate genes causing conotruncal heart disease. A total of 37 patients, 17 male, and 20 female, with isolated conotruncal heart anomalies, were included in the study. No findings indicated any syndrome in terms of dysmorphology in the patients.
Results:Copy number variations were detected in the array comparative genomic hybridisation analysis of five (13.5%) of 37 patients included in the study. Three candidate genes (PRDM16, HIST1H1E, GJA5) found in these deletion and duplication regions may be associated with the conotruncal cardiac anomaly.
Conclusion:CHDs can be encountered as the first and sometimes the single finding of many genetic disorders in children. It is thought that genetic tests, especially array comparative genomic hybridisation, may be beneficial for children with CHD since the diagnosis of genetic diseases in these patients as early as possible will help to prevent or reduce complications that may develop in the future. Also, it would be possible to detect candidate genes responsible for conotruncal cardiac anomalies with array comparative genomic hybridisation.