Antarctic algae are extremophilic organisms capable of surviving harsh environmental conditions such as low temperatures and deep dehydration. Although these algae have various adaptations for life in extreme environments, the majority of the molecular mechanisms behind their resistance to dehydration and freezing are not yet fully understood. The aim of our research was to observe the behaviour of bound water freezing in the free-living Antarctic alga Prasiola crispa. One way to avoid frost damage involves deep dehydration of the algal thallus. For that reason, a detailed analysis of water freezing at different sample hydration levels was carried out. Nuclear magnetic resonance investigation revealed two types of water immobilization: cooperative bound water freezing for samples with sample hydration levels above Δm/m0 = 0.40 and non-cooperative bound water immobilization for lower thallus hydration levels. In the differential scanning calorimetry experiment, 2-h incubation at -20°C suggested the diffusion and final binding of supercooled water to the ice nuclei and a lower hydration level threshold, at which ice formation could be observed (Δm/m0 = 0.21). Our research provides a new perspective on water sorption and freezing in Antarctic algae, which may be important not only in biological systems, but also in such novel materials as metal-organic frameworks or covalent organic frameworks.