We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show a result on propagation of the anisotropic Gabor wave front set for linear operators with a tempered distribution Schwartz kernel. The anisotropic Gabor wave front set is parametrized by a positive parameter relating the space and frequency variables. The anisotropic Gabor wave front set of the Schwartz kernel is assumed to satisfy a graph type criterion. The result is applied to a class of evolution equations that generalizes the Schrödinger equation for the free particle. The Laplacian is replaced by any partial differential operator with constant coefficients, real symbol and order at least two.
I consider a two-parameter family ${{B}_{s,t}}$ of unitary transforms mapping an ${{L}^{2}}$-space over a Lie group of compact type onto a holomorphic ${{L}^{2}}$-space over the complexified group. These were studied using infinite-dimensional analysis in joint work with $\text{B}$. Driver, but are treated here by finite-dimensional means. These transforms interpolate between two previously known transforms, and all should be thought of as generalizations of the classical Segal-Bargmann transform. I consider also the limiting cases $s\,\to \,\infty \,\text{and}\,s\,\to \,t/2$.
We have previously shown how to construct a deformation quantization of any locally compact space on which a vector group acts. Within this framework we show here that, for a natural class of Hamiltonians, the quantum evolutions will have the classical evolution as their classical limit.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.