We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra
$\mathfrak {u}$
extends holomorphically to an action of the complexified group
$U^{\mathbb {C}}$
and that the U-action on Z is Hamiltonian. If
$G\subset U^{\mathbb {C}}$
is compatible, there exists a gradient map
$\mu _{\mathfrak p}:X \longrightarrow \mathfrak p$
where
$\mathfrak g=\mathfrak k \oplus \mathfrak p$
is a Cartan decomposition of
$\mathfrak g$
. In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map
$\mu _{\mathfrak p}$
.
We study actions of Lie supergroups, in particular, the hitherto elusive notion of orbits through odd (or more general) points. Following categorical principles, we derive a conceptual framework for their treatment and therein prove general existence theorems for the isotropy (or stabiliser) supergroups and orbits through general points. In this setting, we show that the coadjoint orbits always admit a (relative) supersymplectic structure of Kirillov–Kostant–Souriau type. Applying a family version of Kirillov’s orbit method, we decompose the regular representation of an odd Abelian supergroup into an odd direct integral of characters and construct universal families of representations, parametrised by a supermanifold, for two different super variants of the Heisenberg group.
Let G be a Lie group, and let M be a smooth proper G-manifold. Let M/G denote the orbit space, and let π : M → M/G be the natural map. It is known that M/G is homeomorphic to a polyhedron. In the present paper we show that there exist a piecewise linear (PL) manifold P, a polyhedron L, and homeomorphisms τ : P → M and σ : M/G → L such that σ o π o τ is PL. This is an application of the theory of subanalytic sets and subanalytic maps of Shiota. If M and the G-action are, moreover, subanalytic, then we can choose τ and σ subanalytic and P and L unique up to PL homeomorphisms.
Given a $p$-dimensional oriented foliation of an $n$-dimensional compact manifold
${{M}^{n}}$ and a transversal invariant measure $\tau$, Sullivan has defined an element of
${{H}_{p}}\left( {{M}^{n}},\,R \right)$. This generalized the notion of a $\mu$-asymptotic cycle, which was originally defined for actions of the real line on compact spaces preserving an invariant measure $\mu$. In this one-dimensional case there was a natural 1–1 correspondence between transversal invariant measures $\tau$ and invariant measures $\mu$ when one had a smooth flow without stationary points.
For what we call an oriented action of a connected Lie group on a compact manifold we again get in this paper such a correspondence, provided we have what we call a positive quantifier. (In the one-dimensional case such a quantifier is provided by the vector field defining the flow.) Sufficient conditions for the existence of such a quantifier are given, together with some applications.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.